Comparisons of six absolute gravimeters at four sites 2004–2007

J. Mäkinen¹, M. Bilker-Koivula¹, H. Ruotsalainen¹, V. Kaftan², N. Gusev², N. Korolev², V. Yushkin², R. Falk³, W. Hoppe³, O. Gitlein⁴

(1) Finnish Geodetic Institute (FGI), Masala, Finland (Jaakko.Makinen@fgi.fi); (2) Central Research Institute of Geodesy, Aerial Survey and Cartography (TsNIIGAiK), Moscow, Russia (kaftan@geod.ru) (3) Federal Agency for Cartography and Geodesy (BKG), Frankfurt am Main, Germany (reinhard.falk@bkg.bund.de); (4) Institut für Erdmessung (IfE), University of Hanover, Hannover, Germany (gitlein@ife.uni-hannover.de)

SITES AND GRAVIMETERS

Site	Metsähovi	Zvenigorod	Pulkovo	Lovozero
Year/month	2004/7(10)	2005/10	2007/6	2007/6
Gravimeter				
FG5-101	2×3 points			
FG5-110	-	2 points	2×1 points	2×1 points
FG5-220	2 points		-	-
FG5-221	2×3 points	2×2 points	2×1 points	2×1 points
FG5-301	2×3 points	-	-	-
GBL P001	2×3 points			

"L×M points" = L independent occupations at each of M points, rotating gravimeter 180 degrees in between to eliminate Coriolis effects in the mean

BKG

IfE

FGI

TsNIIGAiK

FG5-101, FG5-301 FG5-110, GBL-P001 FG5-220 FG5-221

METSÄHOVI GEODETIC OBSERVATORY

- Proposed regional comparison site for absolute gravimeters (AG)
- Four piers on bedrock
- National reference station for gravity
- AG time series 1980-
- Superconducting gravimeter SG GWR T020
- Continuous GNSS: GPS and GLONASS (IGS)
- Satellite Laser Ranging SLR
- Very Long Baseline Interferometry VLBI Environmental sensors:
- Groundwater Soil moisture
- Meteorology: precipitation, temperature, air
- humidity, wind, solar radiation Model for hydrological cycle under construction

General setup

- Metsähovi dedicated lab, others are field sites
- Uncertainties $(1-\sigma)$ for all FG5s is around 2.5 µgal modified from FG5-221 submission to ICAG-2005, GBL-P001 has around 8 µgal based on info from the manufacturer
- Gradient uncertainty essential only in GBL-P001 vs. the FG5s, practically insignificant between the FG5s
- Relative ties measured but not used here

Zvenigorod site: Observatory of the Institute of Astronomy of the Russian Academy of Sciences.

Zvenigorod ground plan; the building is in background in the photo left

981916

Gravity observatory of TsNIIGAiK at the premises of the Pulkovo Astronomical Observatory.

Metsähovi experimental setup

- All frequency standards compared with hydrogen maser
- All barometers compared with standard barometer
- For the FG5-101, 220, 301, GBL-P001 a full factorial experiment with (4 gravimeters) \times (3 sites) \times (2 azimuths) sequenced to make site and azimuth factors orthogonal to linear rate in time
- Significant differences between N/S azimuths in some FG5, averaged out and not treated here
- SG had large drift due to helium fill-up, not usable
- Site (AB, AC, AD) reference values as weighted means, using weight=(uncertainty)^(-2)
- Differences of site reference values used to transfer results to any site

Zvenigorod experimental setup

- Mutual comparisons of frequency standards and barometers
- Incomplete factorial: (3 gravimeters) \times (2 sites) \times (2 azimuths), one azimuth with FG5-101 missing
- Site (A, B) reference values as weighted means, using weight=(uncertainty)^(-2) Differences of site reference values used
- to transfer results to either site

rogals	981916490		ł	Ī	Ţ	I	Īt	_	 FG5-220 FG5-101 FG5-301
Mic	981916480	-		-1	1	1	*	_	× FG5-221 * GBL-P00
	981916470		1	2	3	4	1 5	6	

Metsähovi AB

Comparison at Zvenigorod B, $1-\sigma$ uncertainties

FG5-221 GBI -P00

Zvenigorod both, differences of means to reference value with expanded uncertainty (95%)

AG International Symposium "Gravity, Geoid and Earth Observation 2008" GGEO2008, Chania, Crete, 23-27 June 2008

Zvenigorod A

Comparison at Metsähovi AD, 1-o uncertainties

Metsähovi AD

Pulkovo and Lovozero Mutual comparisons of frequency standards and barometers

Difference of N/S azimuths significant

No reference values plotted here, only differences of gravimeter results

98191647

Comparison at Metsähovi AC, 1-σ uncertainties

GBL P001 (right) is a robustified field version of GABL by Arnautov group (Novosbirsk), built in 1995

- drop 0.46 m, starting at 1 m
- 2-mode HeNe laser in interferometer. compared with (not slaved to) an iodine stabilized laser
- does not have co-accelerating chamber; correction for air resistance needed
- passive isolation device
- oil diffusion vacuum pump

Metsähovi ground plan

Entrance to Lovozero site in a vacated factory in Revda. TsNIIGAiK fundamental GNSS station.

Lovozero interior with FG5-110.

Metsähovi all, differences to reference value

Comparison at Pulkovo, $1-\sigma$ uncertainties

Metsähovi all, differences of instrument means to reference value with expanded uncertainty (95%)

Comparison at Lovozero, 1-o uncertainties